€21.93 – €25.08
1. Key Features
- Number of Records: {Number of rows or records in the dataset.}
- Number of Features: {Number of columns or attributes.}
2. Feature Types
- Numerical Features:
- Examples: {List numerical features, e.g., age, salary.}
- Characteristics: Continuous or discrete values.
- Categorical Features:
- Examples: {List categorical features, e.g., gender, country.}
- Characteristics: Nominal or ordinal data.
- Date/Time Features:
- Examples: {List date/time features, e.g., transaction_date.}
- Characteristics: Represent temporal data.
- Textual Features (if applicable):
- Examples: {List text features, e.g., comments, descriptions.}
- Characteristics: Unstructured data.
3. Missing Values
- Percentage of Missing Values:
- {Percentage or count of missing values per feature.}
- Affected Features:
- {List features with missing values.}
4. Summary Statistics
- Numerical Features:
- Minimum, maximum, mean, and median values.
- Categorical Features:
- Unique categories, frequency distribution.
- Date/Time Features:
- Range of dates, time intervals.
5. Data Imbalance
- Target Variable (if applicable):
- Distribution of classes or categories.
- Example: {Class A: X%, Class B: Y%.}
6. Outliers and Anomalies
- Presence of Outliers:
- Identified in features such as {List affected features.}
- Potential Anomalies:
- Examples of extreme values or unexpected patterns.